ALBERTA SONO
  • Home
  • About
    • The Team
    • Social Media
    • Research >
      • COVID Shunt Study
      • Echo-AKI
      • Curriculum design & implementation
    • Events >
      • ABSono Rounds >
        • ABSono Rounds Recordings
      • Joint Rounds
      • CRUS West 2021
    • Training >
      • CCUS Rotation
      • Clinical CCUS Fellowship
      • eCLass Ultrasound
  • Sonology
    • Physics of ultrasound
    • Transducer manipulation
    • Image optimization
    • Machines >
      • X-Porte
      • EDGE
    • Quality >
      • Essentials QPath E
      • Submitting for QA
    • Critical Thinking
  • Echo
    • Standard echo views >
      • Echo in shock VR
    • LV Function Assessment >
      • Regional cardiac anatomy
    • Pitfalls in LV assessment
    • Pericardial space
    • RV function assessment
    • Inferior vena cava
    • Cardiac Output
    • Echo in VTE
    • The Echo Lab >
      • Standard acquisition
      • Key references
    • TEE >
      • Focused 4-view
      • Shunts and Bubble Studies
  • Lung US
    • Overview
    • Pneumothorax detection
    • Interstitial diseases
    • LUS in respiratory failure
    • Pleural Effusion Assessment
    • LUS in Covid-19
  • Whole-body Ultrasound
    • RUSH exam
  • Procedural US
    • VR in HALO
    • Central line (IJ)
    • Central line (Subclavian)
    • Central line (Femoral)
    • Thoracentesis
    • Paracentesis
    • U/S-guided PIV
    • Radial Arterial line
  • Trauma US
    • eFAST fundamentals
    • eFAST Core Knowledge
    • The Thorax
    • The Heart
    • The Abdomen
  • Neuro
    • Optic nerve sheath diameter
    • Transcranial Doppler
  • GIMUS
    • GIMUS Rounds
    • Rules of GIMUS
  • References and links
    • References
    • Helpful links

Ultrasound physics

​
The least exciting part of learning ultrasound is physics. Be assured that the physics of ultrasound is much more practical than what you would have learned in grade school or post-secondary education. We have included a tutorial below as a basic introduction to ultrasound physics. We have also included a selection of key images to help review this content.

ABSono physics tutorial

Attenuation

Ultrasound experiences a loss of signal strength as interacts with tissue. There are 4 factors that lead to attenuation of signal strength as illustrated in this image.
Picture

Imaging types

There are 3 kinds of imaging that you may use as you ultrasound a patient. Most people think of ultrasound as a black and white gray-scale image (brightness or 2-dimensional mode), but there is also M(motion) mode and Doppler (Color, power, and spectral). M-mode is used less commonly but has the added advantage of a really high frame rate to make precise measurements. Doppler allows you to monitor blood flow in the heart to check for leaky/tight valves and check pressures.
Picture

Tissue echogenicity

Tissue can appears with different degrees of reflection. A tissue which does not reflect any sound waves is black and called "anechoic". On the other end of the spectrum is hyper-echoic where there is more intense reflection (tissues with calcium can reflect more than those without).
Picture

References

  • Home
  • About
    • The Team
    • Social Media
    • Research >
      • COVID Shunt Study
      • Echo-AKI
      • Curriculum design & implementation
    • Events >
      • ABSono Rounds >
        • ABSono Rounds Recordings
      • Joint Rounds
      • CRUS West 2021
    • Training >
      • CCUS Rotation
      • Clinical CCUS Fellowship
      • eCLass Ultrasound
  • Sonology
    • Physics of ultrasound
    • Transducer manipulation
    • Image optimization
    • Machines >
      • X-Porte
      • EDGE
    • Quality >
      • Essentials QPath E
      • Submitting for QA
    • Critical Thinking
  • Echo
    • Standard echo views >
      • Echo in shock VR
    • LV Function Assessment >
      • Regional cardiac anatomy
    • Pitfalls in LV assessment
    • Pericardial space
    • RV function assessment
    • Inferior vena cava
    • Cardiac Output
    • Echo in VTE
    • The Echo Lab >
      • Standard acquisition
      • Key references
    • TEE >
      • Focused 4-view
      • Shunts and Bubble Studies
  • Lung US
    • Overview
    • Pneumothorax detection
    • Interstitial diseases
    • LUS in respiratory failure
    • Pleural Effusion Assessment
    • LUS in Covid-19
  • Whole-body Ultrasound
    • RUSH exam
  • Procedural US
    • VR in HALO
    • Central line (IJ)
    • Central line (Subclavian)
    • Central line (Femoral)
    • Thoracentesis
    • Paracentesis
    • U/S-guided PIV
    • Radial Arterial line
  • Trauma US
    • eFAST fundamentals
    • eFAST Core Knowledge
    • The Thorax
    • The Heart
    • The Abdomen
  • Neuro
    • Optic nerve sheath diameter
    • Transcranial Doppler
  • GIMUS
    • GIMUS Rounds
    • Rules of GIMUS
  • References and links
    • References
    • Helpful links