ALBERTA SONO
  • Home
  • About
    • The Team
    • Social Media
    • Research >
      • COVID Shunt Study
      • Echo-AKI
      • Curriculum design & implementation
    • Events >
      • ABSono Rounds >
        • ABSono Rounds Recordings
      • Joint Rounds
      • CRUS West 2021
    • Training >
      • CCUS Rotation
      • Clinical CCUS Fellowship
      • eCLass Ultrasound
  • Sonology
    • Physics of ultrasound
    • Transducer manipulation
    • Image optimization
    • Machines >
      • X-Porte
      • EDGE
    • Quality >
      • Essentials QPath E
      • Submitting for QA
    • Critical Thinking
  • Echo
    • Standard echo views >
      • Echo in shock VR
    • LV Function Assessment >
      • Regional cardiac anatomy
    • Pitfalls in LV assessment
    • Pericardial space
    • RV function assessment
    • Inferior vena cava
    • Cardiac Output
    • Echo in VTE
    • The Echo Lab >
      • Standard acquisition
      • Key references
    • TEE >
      • Focused 4-view
      • Shunts and Bubble Studies
  • Lung US
    • Overview
    • Pneumothorax detection
    • Interstitial diseases
    • LUS in respiratory failure
    • Pleural Effusion Assessment
    • LUS in Covid-19
  • Whole-body Ultrasound
    • RUSH exam
  • Procedural US
    • VR in HALO
    • Central line (IJ)
    • Central line (Subclavian)
    • Central line (Femoral)
    • Thoracentesis
    • Paracentesis
    • U/S-guided PIV
    • Radial Arterial line
  • Trauma US
    • eFAST fundamentals
    • eFAST Core Knowledge
    • The Thorax
    • The Heart
    • The Abdomen
  • Neuro
    • Optic nerve sheath diameter
    • Transcranial Doppler
  • GIMUS
    • GIMUS Rounds
    • Rules of GIMUS
  • References and links
    • References
    • Helpful links

Image optimization

Features to help you optimize image acquisition

This page will review and highlight key points in acquisition and optimization of ultrasound images.

Linear array probe

The linear array probe is high-frequency, which offers superb near-field resolution. High frequency wavelengths undergo much attenuation and therefore offer little in the way of depth. Nonetheless, its design is ideal for pleura visualization, vascular access, optical nerve sheath and looking for venous thrombi in deep vasculature.
Picture

Phased array probe

The phased array probe is a low-mid frequency probe. The sequential activation of the crystals allows for clear dynamical visual imaging of cardiac structures. But the phased array is much more than the "cardiac probe", as it can used for the chest, abdomen, and transcranial Doppler.
Picture

Curvilinear probe

The curvilinear probe is a low-frequency probe with high depth of penetration. Low frequency sound waves undergo less attenuation, but also offer less resolution. While many think the curvilinear probe is simply the "abdominal probe", it actually offers much more. You can use it for lung/thoracic ultrasound to look for sliding/ pleural effusions. On top of being excellent for abdominal imaging, it can also be used for vascular access in the severely overweight individual.
Picture

Machine interface

Make sure you are comfortable with your machine to access all the settings including:
1. Depth
2. Gain
3. Beam orientation
4. Sector width
5. Dynamic range
​
Picture
Picture

Video tutorial

In this video tutorial we will describe image optimization by manipulation of key features.
  • Home
  • About
    • The Team
    • Social Media
    • Research >
      • COVID Shunt Study
      • Echo-AKI
      • Curriculum design & implementation
    • Events >
      • ABSono Rounds >
        • ABSono Rounds Recordings
      • Joint Rounds
      • CRUS West 2021
    • Training >
      • CCUS Rotation
      • Clinical CCUS Fellowship
      • eCLass Ultrasound
  • Sonology
    • Physics of ultrasound
    • Transducer manipulation
    • Image optimization
    • Machines >
      • X-Porte
      • EDGE
    • Quality >
      • Essentials QPath E
      • Submitting for QA
    • Critical Thinking
  • Echo
    • Standard echo views >
      • Echo in shock VR
    • LV Function Assessment >
      • Regional cardiac anatomy
    • Pitfalls in LV assessment
    • Pericardial space
    • RV function assessment
    • Inferior vena cava
    • Cardiac Output
    • Echo in VTE
    • The Echo Lab >
      • Standard acquisition
      • Key references
    • TEE >
      • Focused 4-view
      • Shunts and Bubble Studies
  • Lung US
    • Overview
    • Pneumothorax detection
    • Interstitial diseases
    • LUS in respiratory failure
    • Pleural Effusion Assessment
    • LUS in Covid-19
  • Whole-body Ultrasound
    • RUSH exam
  • Procedural US
    • VR in HALO
    • Central line (IJ)
    • Central line (Subclavian)
    • Central line (Femoral)
    • Thoracentesis
    • Paracentesis
    • U/S-guided PIV
    • Radial Arterial line
  • Trauma US
    • eFAST fundamentals
    • eFAST Core Knowledge
    • The Thorax
    • The Heart
    • The Abdomen
  • Neuro
    • Optic nerve sheath diameter
    • Transcranial Doppler
  • GIMUS
    • GIMUS Rounds
    • Rules of GIMUS
  • References and links
    • References
    • Helpful links